another and their elimination would lead to the corresponding carbazole. At the applied electrolysis potential the carbazole would be oxidized on to its cation radical, so the overall process has an n value of 3 .

It is interesting to note that this type of reaction may be fairly general in organic electrooxidations. It has recently been shown that the electrochemical oxidation of tetraarylethylenes leads to the formation of substituted phenanthrenes. ${ }^{28,29}$ Since the arylethylene dications are isoelectronic with the arylamine dications, the same mechanism may be operative, i.e., a concerted electrocyclic ring closure (eq 4 and 5).

In summary, then, it would appear that these electrochemical data can do relatively little to further clarify the photolytic mechanism. However, the following points can be forwarded.
(1) The photochemical process cannot go through the amine cation radical; according to the electrochemical studies if the cation radical were implicated some benzidines should be found (unless there is a tremendous solvent effect between polar and nonpolar media).
(2) The photochemical process may go through the amine dication, but again the role of solvent has not been clarified.
(3) The cyclization reaction is general for di- and tri-
(28) J. D. Stuart and W. E. Ohnesorge, J. Electroanal. Chem., 30, App. 11 (1971).
(29) J. D. Stuart and W. E. Ohnesorge, J. Amer. Chem. Soc., 93, 4531 (1971).
arylamines and is not limited to molecules containing roughly neutral or electron-donating substituents as implied in the collected photochemical studies. However, this is not to say that all the molecules converted electrochemically could also be cyclized photochemically with higher energy radiation.

Extensive electrochemical studies in our laboratory and by others have shown that the following conditions are necessary for the electrochemical cyclization reaction.
(1) Only tertiary aromatic amines can be cyclized where at most one alkyl group can be present and all aromatic rings must be substituted in the positions para to the amine nitrogen. In addition, these substituents must not be susceptible to substitution or elimination.
(2) The reactions must be carried out in nonaqueous media since only here can oxidation potentials be applied such that the amines can be oxidized to the dications.

Further studies are now in progress to achieve better yields in the electrochemical oxidations.

Acknowledgments. Financial support for this work through National Science Foundation Grants GP20606 and GP-31199 is gratefully acknowledged. Suggestions by Dr. A. J. Fry concerning the mechanistic aspects of this study were invaluable. Special thanks are also due to Drs. R. N. Adams and D. E. Smith for their support and encouragement.

Intermediates in Nucleophilic Aromatic Substitution. XI. ${ }^{1}$
 Spiro Meisenheimer Complex of
 $\mathcal{N}, \mathcal{N}^{\prime}$-Dimethyl- \mathcal{N}-picrylethylenediamine. Partially
 Rate-Limiting Proton Transfer of Complex Formation. A Temperature-Jump Study

Claude F. Bernasconi* ${ }^{* 2}$ and Constantin L. Gehriger
Contribution from the Thimann Laboratories of the University of California, Santa Cruz, California 95064. Received June 30, 1973

Abstract

Abstraet: $\quad N, N^{\prime}$-Dimethyl- N-picrylethylenediamine (AH) is in equilibrium with the spiro Meisenheimer complex (XH and X^{-}) formed by intramolecular nucleophilic attack on the 1 position of the picryl moiety (eq 1). The rate of equilibration between the starting material and the two forms of the complex, as determined by the temperaturejump technique, not only shows the expected pH dependence but also increases with buffer concentration. The buffer dependence is curvilinear and reaches a plateau at high concentration. This indicates a change from ratelimiting proton transfer at a low concentration to rate-determining nucleophilic attack at high concentration and is a consequence of the unexpectedly high rate constant of $2 \times 10^{5} \mathrm{sec}^{-1}$ for the reversion of the zwitterion (XH) to N, N^{\prime}-dimethyl- N-picrylethylenediamine. These results suggest that in some cases general base catalysis in nucleophilic aromatic substitutions by amines is a manifestation of slow proton transfer rather than of sluggish leaving group departure.

In our attempts to deal with the problem of the rates at which intermediates in activated nucleophilic aromatic substitution reactions expel various mobile groups from their sp^{3} hybridized carbon, we have fre-

[^0]quently chosen the reversible interaction of $1,3,5$-trinitrobenzene (TNB) with various nucleophiles as a model reaction. ${ }^{3}$

The choice of TNB as a model substrate offers both
(3) (a) C. F. Bernasconi, J. Amer. Chem. Soc., 92, 129 (1970); (b) C. F. Bernasconi, ibid., 92, 4682 (1970); (c) C. F. Bernasconi and R, G. Bergstrom, J. Org. Chem., 36, 1326 (1971); (d) C. F. Bernasconi and R. G. Bergstrom, J. Amer. Chem. Soc., 95, 3603 (1973).

Figure 1. Absorption spectra of $\mathrm{AH}_{2}{ }^{+}$at various pH values in $\mathrm{H}_{2} \mathrm{O}$ $\left(\left[\mathrm{AH}_{2}{ }^{+}\right]_{0}=4 \times 10^{-5} \mathrm{M}, \mu=0.5 \mathrm{M}\right):(-) \mathrm{pH} 6.52 ;(-\cdots) \mathrm{pH}$ 8.16; (--) pH 8.50; ($-\cdots-\cdots$) pH 8.80; (....) pH 8.95; $(--\cdot) \mathrm{pH} 9.47 ;(— —) \mathrm{pH} 12.14$.
advantages and drawbacks. The absence of a nucleofugic leaving group reduces the complexity of the kinetic system since one has to deal with one equilibrium process only, though possibly coupled with an acidbase equilibrium in the case of amine nucleophiles.

The intramolecular Meisenheimer complex formation of N, N^{\prime}-dimethyl- N-picrylethylenediamine (AH), eq 1, though still not a "perfect" model reaction, goes

far toward overcoming the disadvantages of TNB since the $\mathrm{CH}_{3}-\mathrm{N}-\mathrm{CH}_{2}$ moiety mimics the electronic and steric effects on k_{1}, k_{-1}, and K_{X} exerted by a typical alkoxy leaving group much better than does hydrogen.

The fact that the reaction is intramolecular is a possible drawback; however, this factor is likely to affect k_{1} the most whereas the effect on k_{-1} and K_{x}, the quantities we are principally interested in, should be minor. The choice of an intramolecular system was dictated by the greater stability of the complex and the wish to avoid complications due to competing nucleophilic attack at the 3 position. ${ }^{4}$

In conformity with widely accepted ideas about the detailed mechanism of base catalysis in nucleophilic aromatic substitutions (see Discussion) and some of our own observations regarding the interaction of TNB with aliphatic amines, ${ }^{3 a}$ we started out by assum-

[^1]

Figure 2. Representative plots of $\tau^{-1} v s$. total buffer concentration: (О) $\mathrm{pH} 8.60,\left[\mathrm{AH}_{2}{ }^{+}\right]_{0}=4 \times 10^{-4} \mathrm{M}$; (口) $\mathrm{pH} 8.00,\left[\mathrm{AH}_{2}{ }^{+}\right]_{0}=4 \times$ $10^{-3} M ;(\Delta) \mathrm{pH} 7.80,\left[\mathrm{AH}_{2}^{+}\right]_{0}=4 \times 10^{-3} M$.
ing that the proton transfer equilibria in eq 1 would under all experimental conditions be rapidly established compared to the steps symbolized with k_{1} and k_{-1}. However, we found that below $\mathrm{pH} \sim 10$ the formation of X^{-}is significantly general base catalyzed indicating that proton removal from XH is rate limiting.

Results

General Features. When base is added to an aqueous solution of N, N^{\prime}-dimethyl- N-picrylethylenediamine hydrochloride $\left(\mathrm{AH}_{2}{ }^{+}\right)$, there is an immediate formation of a red species with the typical absorption spectrum of a Meisenheimer complex ($\mathrm{XH}+\mathrm{X}^{-}$) as shown in Figure 1. At $\mathrm{pH} \geq 12$ complex formation appears to be quantitative. The structure of X^{-}was confirmed by pmr spectroscopy in DMSO solution (see Experimental Section).

Buffered aqueous solutions at varying pH values were subjected to temperature jumps of 3° (end temperature 25°). The ensuing chemical relaxation effect was monitored spectrophotometrically at 546 or 365 nm . We were able to cover a range from pH 7.6 to 10.5. Though measurements at $\mathrm{pH}<7.6$ would have been desirable, the equilibrium concentration of the complex which is limited by the solubility of $\mathrm{AH}_{2}{ }^{+}$ becomes too small for monitoring the chemical relaxation.

One single relaxation time was observed under all experimental conditions. It not only depends strongly on the pH as one would expect for a system such as eq 1, but at $\mathrm{pH} \leq 9.5$ also on the chemical nature and the concentration of the buffer as well as on the substrate concentration. The data are summarized in Tables I and II.

Most revealing is the curvilinear dependence of the reciprocal relaxation time on buffer concentration as shown in some representative plots in Figure 2. This is a clear indication that buffer catalysis cannot be due to a concerted process and that we are dealing with a change in the rate-determining step in the reaction mechanism as the buffer concentration is increased.

Mechanism. We shall show that our data are consistent with the mechanism of eq $2 ; k_{3}$ and $k_{3}{ }^{\circ} \mathrm{H}$ refer to the rate coefficients for proton abstraction from XH
by the solvent and by hydroxide ion, respectively, whereas the $k_{3}{ }^{B_{i}}$'s are the rate coefficients for proton transfer to any general base present, including the buffer base, as well as X^{-}and AH. Similarly k_{-3} and $k_{-3}{ }^{\mathrm{OH}}$ refer to the rate coefficients of protonation of X^{-} by " re hydronium ion and the solvent, respectively, whe eas the $k_{-3}{ }^{B_{i}}$'s refer to the protonation by general acids such as the buffer acid, $\mathrm{AH}_{2}{ }^{+}$, and XH .

Let us assume that $k_{-1}+k_{3}+k_{3}{ }^{\mathrm{OH}}\left[\mathrm{OH}^{-}\right]+\Sigma k_{3}{ }^{\mathrm{B}_{\mathrm{i}}}$. $\left[\mathrm{B}_{\mathrm{i}}\right] \gg k_{1}$ and $\left.k_{-3}\left[\mathrm{H}^{+}\right]+k_{-3}{ }^{\mathrm{OH}}+\Sigma k_{-3}{ }^{\mathrm{B}}\left[\mathrm{BH}_{\mathrm{i}}\right]\right]^{5} \quad$ This assumption which will be justified in the Discussion allows XH to be treated as a steady-state intermediate; the reaction rate in terms of X^{-}can then be expressed by

$$
\begin{equation*}
\mathrm{d}\left[\mathrm{X}^{-}\right] / \mathrm{d} t=k_{\mathrm{f}}[\mathrm{AH}]-k_{\mathrm{b}}\left[\mathrm{X}^{-}\right] \tag{3}
\end{equation*}
$$

with

$$
\begin{align*}
& k_{\mathrm{f}}=\frac{k_{1}\left(k_{3}+k_{3}{ }^{\mathrm{OH}}\left[\mathrm{OH}^{-}\right]+\Sigma k_{3} \mathrm{~B}_{\mathrm{i}}\left[\mathrm{~B}_{\mathrm{i}}\right]\right)}{k_{-1}+k_{3}+k_{3} \mathrm{OH}^{\mathrm{OH}}\left[\mathrm{OH}^{-}\right]+\Sigma k_{3}^{\mathrm{B}_{i}}\left[\mathrm{~B}_{\mathrm{i}}\right]} \tag{4}\\
& k_{\mathrm{b}}=\frac{k_{-1}\left(k_{-3}\left[\mathrm{H}^{+}\right]+k_{-3} \mathrm{OH}^{\mathrm{OH}}+\Sigma k_{-3}{ }^{\mathrm{B}_{\mathrm{i}}}\left[\mathrm{BH}_{\mathrm{i}}\right]\right)}{k_{-1}+k_{3}+k_{3} \mathrm{OH}^{\mathrm{OH}}\left[\mathrm{OH}^{-}\right]+\Sigma k_{3}{ }^{\mathrm{B}_{\mathrm{i}}}\left[\mathrm{~B}_{\mathrm{i}}\right]} \tag{5}
\end{align*}
$$

If we assume further that $\mathrm{AH}_{2}{ }^{+}$and AH are always in rapid equilibrium with respect to the time scale of the processes governed by k_{f} and k_{b} (the forward and backward rate constants, respectively), the reciprocal relaxation time derived according to standard procedures ${ }^{6}$ is given by

$$
\begin{equation*}
\tau^{-1}=k_{\mathrm{f}} \frac{K_{\mathrm{A}}}{K_{\mathrm{A}}+\left[\mathrm{H}^{+}\right]}+k_{\mathrm{b}} \tag{6}
\end{equation*}
$$

Kinetics at High Buffer Concentrations With respect to eq 6 two limiting situations are of particular interest. In the first the deprotonation of XH is much more rapid than its reversion to AH , i.e., $k_{3}+k_{3}{ }^{\mathrm{OH}}$. $\left[\mathrm{OH}^{-}\right]+\Sigma k_{3}{ }^{\mathrm{B}_{\mathrm{i}}}\left[\mathrm{B}_{\mathrm{i}}\right] \gg k_{-1}$. This situation is achieved at high buffer base concentrations (plateaus in Figure 2) and/or at high pH . Equation 6 simplifies to eq 7

$$
\begin{equation*}
\tau_{\mathrm{hi}^{-1}}=k_{1} \frac{K_{\mathrm{A}}}{K_{\mathrm{A}}+\left[\mathrm{H}^{+}\right]}+k_{-1} \frac{\left[\mathrm{H}^{+}\right]}{K_{\mathrm{X}}} \tag{7}
\end{equation*}
$$

where " $\tau_{\mathrm{hi}^{-1}}{ }^{-1}$ " refers to high base concentration and K_{X} is the acid dissociation constant of XH.

One can determine the parameters $k_{-1} / K_{\mathrm{x}}, k_{1}$, and K_{A} from the $\tau_{\mathrm{hi}}{ }^{-1}$ values (equivalent to τ^{-1} at the highest buffer concentration employed; see Table I) as follows. At $\mathrm{pH} \leq 8.6$ a plot of $\tau_{\text {hi }}{ }^{-1} v s$. $\left[\mathrm{H}^{+}\right]$(not shown) is a straight line, indicating that $\tau_{\mathrm{hi}^{-1}}{ }^{-1} \approx k_{-1}\left[\mathrm{H}^{+}\right] / K_{\mathrm{X}} .{ }^{7}$ The slope is $k_{-1} / K_{\mathrm{x}}=8.4 \times 10^{11} \mathrm{M}^{-1} \mathrm{sec}^{-1}$.
(5) We will use the symbol " \gg " to indicate "at least tenfold larger", throughout this paper.
(6) M. Eigen and L. DeMaeyer in A. Weissberger, "Technique of Organic Chemistry," Vol. VIII, Part 2, Wiley-Interscience, New York, N. Y., 1963, p 895.
(7) $\left[\mathrm{H}^{+}\right]$was calculated from the hydrogen ion activity as determined by the pH meter by means of the relation $\left[\mathrm{H}^{+}\right]=a_{\mathrm{H}^{+}} / \gamma_{\mathrm{H}}{ }^{+}$where $\gamma_{\mathrm{H}^{+}}$ $=0.74$ is the trace activity coefficient in $0.5 \mathrm{M} \mathrm{NaCl} .^{8}$
(8) H. S. Harned and R. A. Robinson in "Multicomponent Electrolyte Solutions," Permagon Press, Long Island City, N. Y., 1968, p 50 .

Table I. Reciprocal Relaxation Times between pH 7.8 and 10.4 at High Buffer Concentrations ${ }^{a}$

$\mathrm{pH}^{\text {b }}$	$[\mathrm{Buff}]_{0},{ }^{\text {c }}$ M	$\tau^{-1}, \sec ^{-1}$
7.80^{d}	0.2	$15,700 \pm 1600$
	0.4	17,500 ± 1700
	0.6	$18,400 \pm 1800^{\prime}$
$8.00^{\text {d }}$	0.4	$11,500 \pm 1000$
	0.6	$12,100 \pm 1000^{\prime}$
$8.20^{\text {d }}$	0.2	$7,020 \pm 500$
	0.4	$7,300 \pm 500^{\prime}$
$8.60{ }^{\text {d }}$	0.4	$3,200 \pm 200$
	0.6	$3,100 \pm 200$
	0.8	$3,400 \pm 200^{\prime}$
$9.00^{\text {d }}$	0.15	$1,710 \pm 85$
	0.4	$1,840 \pm 90$
	0.6	$1,890 \pm 90$.
$9.40^{\text {d }}$	0.4	$1,360 \pm 70$
	0.6	1,290 ± 70
	0.8	$1,350 \pm 70^{\prime}$
9.80°	0.2	$1,180 \pm 60$
	0.28	$1,210 \pm 60$
	0.36	$1,250 \pm 60^{\prime}$
10.00^{e}	0.2	$1,200 \pm 80$
	0.28	$1,220 \pm 80$
	0.36	$1,230 \pm 80^{\prime}$
10.40°	0.12	$1,170 \pm 80$
	0.20	$1,200 \pm 80$
	0.28	$1,210 \pm 80^{\prime}$

${ }^{a}$ At $25 \pm 0.5^{\circ}, \mu=0.5 \mathrm{M}$ maintained by addition of NaCl , substrate concentration $\left[\mathrm{AH}_{2}{ }^{+}\right]_{0}=2 \times 10^{-4}$ (high pH) to 3×10^{-3} M (low pH). ${ }^{b} \mathrm{pH}$ as measured by glass electrode. ${ }^{c}[\text { Buff }]_{0}=$ total buffer concentration. ${ }^{d}$ Tris buffer. ${ }^{e}$ Carbonate buffer. ${ }^{f}$ Equivalent to $\tau_{\mathrm{hi}}{ }^{-1}$, see text.

As is apparent from Table I , at $\mathrm{pH} \geq 10.0 \tau_{\mathrm{hi}}{ }^{-1}$ is no longer dependent on the pH , indicating $K_{\mathrm{A}} \gg\left[\mathrm{H}^{+}\right]$ and $k_{1} \gg k_{-1}\left[\mathrm{H}^{+}\right] / K_{\mathrm{X}}$; thus $\tau_{\mathrm{hi}^{-1}}(\mathrm{pH} \geq 10.0)=k_{1}$ $=1200 \mathrm{sec}^{-1}$.

Rearranging eq 7 to eq 8 allows one to solve for K_{A};

$$
\begin{equation*}
K_{\mathrm{A}}=\frac{\left(\tau_{\mathrm{hi}^{-1}}-k_{-1}\left[\mathrm{H}^{+}\right] / K_{\mathrm{X}}\right)\left[\mathrm{H}^{+}\right]}{k_{1}+k_{-1}\left[\mathrm{H}^{+}\right] / K_{\mathrm{X}}-\tau_{\mathrm{hi}}{ }^{-1}} \tag{8}
\end{equation*}
$$

at $\mathrm{pH} 8.6,9.0$, and 9.4 one calculates $K_{\mathrm{A}}=2.87,2.21$, and $1.60 \times 10^{-9} M$, average $K_{\mathrm{A}}=2.23 \times 10^{-9}$ or $\mathrm{p} K_{\mathrm{A}}$ $=8.65{ }^{9}$

Equilibrium Measurements. Above 500 nm XH and X- are practically the sole contributors to light absorption (Figure 1). Thus for $1-\mathrm{cm}$ cuvettes Beer's law is given by eq 9 . By expressing $[\mathrm{XH}]$ and $\left[\mathrm{X}^{-}\right]$in terms

$$
\begin{equation*}
\mathrm{OD}=\epsilon_{\mathrm{XH}}[\mathrm{XH}]+\epsilon_{\mathrm{X}^{-}}\left[\mathrm{X}^{-}\right] \tag{9}
\end{equation*}
$$

of the analytical concentration of AH_{2}^{+}and the respective equilibrium constants ($K_{1}=k_{1} / k_{-1}$) one obtains
$\frac{\mathrm{OD}}{\left[\mathrm{AH}_{2}\right]_{0}}=$

$$
\frac{\epsilon_{\mathrm{XH}} K_{\mathrm{A}} K_{1}\left[\mathrm{H}^{+}\right]+\epsilon_{\mathrm{X}}^{-} K_{\mathrm{A}} K_{1} K_{\mathrm{X}}}{\left[\mathrm{H}^{+}\right]^{2}+K_{\mathrm{A}}\left[\mathrm{H}^{+}\right]+K_{\mathrm{A}} K_{1}\left[\mathrm{H}^{+}\right]+K_{\mathrm{A}} K_{1} K_{\mathrm{x}}}
$$

At low pH where there is little XH and X^{-}in equilibrium with $\mathrm{AH}_{2}{ }^{+}$and AH , the $\left[\mathrm{H}^{+}\right]^{2}$ term in the denominator is dominant and eq 10 , after rearrangement, simplifies to eq 11 . A plot of the left-hand side of eq
(9) Note that K_{A} is only calculated at pH values between 8.6 and 9.4 where $\tau_{\mathrm{h}}{ }^{-1}$ depends strongly on K_{A}; at $\mathrm{pH}<8.6$ the numerator, at $\mathrm{pH}>9.4$ the denominator, in eq 8 becomes a small difference between two large numbers.

Figure 3. Determination of K_{X} from absorption measurements; plot according to eq 11 .

$$
\begin{equation*}
\frac{\mathrm{OD}\left[\mathrm{H}^{+}\right]}{\left[\mathrm{AH}_{2}{ }^{+}\right]_{0}}=\epsilon_{\mathrm{XH}} K_{\mathrm{A}} K_{1}+\frac{\epsilon_{\mathrm{X}}-K_{\mathrm{A}} K_{1} K_{\mathrm{X}}}{\left[\mathrm{H}^{+}\right]} \tag{11}
\end{equation*}
$$

$11 \mathrm{os} .\left[\mathrm{H}^{+}\right]^{-17}$ should yield a straight line with intercept $=\epsilon_{\mathrm{XH}} K_{\mathrm{A}} K_{1}$ and slope $\epsilon_{\mathrm{x}}-K_{\mathrm{A}} K_{1} K_{\mathrm{x}}$.

Such a plot is shown in Figure 3. Due to the rather low OD readings at the lowest pH values the experimental uncertainty is relatively high as indicated in the figure. From the ratio slope/intercept we can estimate K_{X} since ϵ_{XH} and $\epsilon_{\mathrm{X}}{ }^{-}$are expected to be very similar though probably not identical; ${ }^{10}$ one thus obtains K_{X}

$$
\begin{equation*}
\frac{\text { slope }}{\text { intercept }}=\frac{\epsilon_{\mathrm{X}}^{-}}{\epsilon_{\mathrm{XH}}} K_{\mathrm{X}} \approx K_{\mathrm{X}}\left(\epsilon_{\mathrm{XH}} \approx \epsilon_{\mathrm{X}^{-}}\right) \tag{12}
\end{equation*}
$$

$$
=2.29 \times 10^{-7} M \text { or } \mathrm{p} K_{\mathrm{x}}=6.64 .
$$

Combining K_{X} with $k_{-1} / K_{\mathrm{X}}=8.4 \times{ }^{1011} \mathrm{M}^{-1} \mathrm{sec}^{-1}$ (from slope of $\tau_{\mathrm{hi}^{-1}}{ }^{-1}$ vs. $\left[\mathrm{H}^{+}\right]$at low pH) we calculate $k_{-1}=1.93 \times 10^{5} \mathrm{sec}^{-1}$, and further from $k_{1}=1200$ sec^{-1} (from $\tau_{\mathrm{hi}^{-1}}$ at $\mathrm{pH} \geq 10.0$) one obtains $K_{1}=k_{1} / k_{-1}$ $=6.21 \times 10^{-3}$. Finally from the intercept of Figure 3 we calculate $K_{\mathrm{A}}=$ (intercept) $/ K_{1} \epsilon_{\mathrm{X}^{-11}}=2.82 \times 10^{-9}$ M which is in good agreement with $K_{\mathrm{A}}=2.23 \times 10^{-9}$ obtained from $\tau_{\mathrm{hi}}{ }^{-1}$ via eq 8 .
Kinetics at Low Buffer Concentrations. The second important limiting situation with regard to eq 6 obtains in the absence of general acids and bases; eq 6 simplifies to eq 13. $\tau_{\mathrm{no}}{ }^{-1}$ is obtained by extrapolating τ^{-1}

$$
\begin{array}{r}
\tau_{\mathrm{no}}{ }^{-1}=\frac{k_{1}\left(k_{3}+k_{3}{ }^{\mathrm{OH}}\left[\mathrm{OH}^{-}\right]\right)}{k_{-1}+k_{3}+k_{3}{ }^{\circ} \mathrm{H}\left[\mathrm{OH}^{-}\right]} \frac{K_{\mathrm{A}}}{K_{\mathrm{A}}+\left[\mathrm{H}^{+}\right]}+ \\
\frac{k_{-1}\left(k_{-3}\left[\mathrm{H}^{+}\right]+k_{-3}{ }^{\mathrm{OH}}\right)}{\left.k_{-1}+k_{3}+k_{3}{ }^{\mathrm{OH}[\mathrm{OH}}{ }^{-}\right]} \tag{13}
\end{array}
$$

to zero buffer and zero substrate concentration. This was achieved by measuring the buffer dependence of τ^{-1} at two different substrate concentrations. Extrapolation of the ordinate intercepts of such plots to zero substrate concentration yields $\tau_{\text {no }}{ }^{-1}$ which is plotted $v s$. pH in Figure 4.
(10) C. F. Bernasconi, J. Org. Chem., 35, 1214 (1970).
(11) Assuming $\epsilon_{\mathrm{XH}} 13,400$ at 510 nm as measured in a solution of pH 12.

Figure 4. $\tau_{\mathrm{no}}{ }^{-1}$ as a function of pH .

Note that the left-hand side of the plot is dominated by the second term in eq 13 , the right-hand side by the first term. The right-hand side approaches a plateau value equal to $k_{1}=1200 \mathrm{sec}^{-1}\left(k_{3}{ }^{\circ \mathrm{H}}\left[\mathrm{HO}^{-}\right]+k_{3} \gg\right.$ k_{-1}).

The data of Figure 4, in combination with $k_{1}, k_{-1}, K_{\mathrm{A}}$, and K_{X}, allow us to obtain $k_{3}, k_{-3}, k_{3}{ }^{\circ \mathrm{H}}$, and $k_{-3}{ }^{\circ \mathrm{HH}}$ as follows: $5 \times 10^{10} \mathrm{M}^{-1} \mathrm{sec}^{-1}$ is an upper limit to be expected for $k_{-3}{ }^{12}$ From this we calculate the upper limit for $k_{3}=K_{\mathrm{x}} k_{-3} \geq 1.05 \times 10^{4} \mathrm{sec}^{-1}$. This is much smaller than $k_{-1}=1.93 \times 10^{5} \mathrm{sec}^{-1}$ and consequently eq 13 can be simplified to eq 14 .

$$
\begin{align*}
& \tau_{\mathrm{no}}{ }^{-1}=\frac{k_{1}\left(k_{3}+k_{3}{ }^{\left.\circ \mathrm{H}\left[\mathrm{OH}^{-}\right]\right)}\right.}{k_{-1}+k_{3}{ }^{\mathrm{OH}\left[\mathrm{OH}^{-}\right]}} \frac{K_{\mathrm{A}}}{K_{\mathrm{A}}+\left[\mathrm{H}^{+}\right]}+ \\
& \frac{k_{-1}\left(k_{-3}\left[\mathrm{H}^{+}\right]+k_{-3}{ }^{\mathrm{HO}}\right)}{k_{-1}+k_{3}{ }^{\mathrm{OH}}\left[\mathrm{OH}^{-}\right]} \tag{14}
\end{align*}
$$

The reaction of XH with OH^{-}may or may not be diffusion controlled, depending on whether there is significant intramolecular hydrogen bonding to one of the ortho nitro groups or not. ${ }^{13}$ Thus, $k_{3}{ }^{\text {OH }} \leq 10^{10} \mathrm{M}^{-1}$ sec^{-112} and $k_{-3}{ }^{\mathrm{OH}}=k_{3}{ }^{\mathrm{OH}} K_{\mathrm{W}} / K_{\mathrm{X}} \leq 940 \mathrm{sec}^{-1} .{ }^{14}$ The fact that the plot of $\tau_{\mathrm{no}}{ }^{-1}$ levels off $\left(k_{3}{ }^{\circ}{ }^{\mathrm{OH}}\left[\mathrm{OH}^{-}\right] \gg k_{-1}\right)$ at a pH as low as 10.4 (Figure 4$)\left(\left[\mathrm{OH}^{-}\right]=4.9 \times 10^{-414}\right)$ shows that $k_{3}{ }^{\circ \mathrm{H}} \gg k_{-1}\left[\mathrm{OH}^{-}\right]=3.7 \times 10^{8} \mathrm{M}^{-1} \mathrm{sec}^{-1}$; thus $k_{3}{ }^{\circ \mathrm{H}}$ cannot be far below the upper limit of 10^{10} $M^{-1} \mathrm{sec}^{-1}$. From this we conclude that $k_{3}{ }^{\circ}\left[\mathrm{OH}^{-}\right] \gg$ k_{3} and $k_{-3}{ }^{\circ} \mathrm{OH} \gg k_{-3}\left[\mathrm{H}^{+}\right]$at $\mathrm{pH} \geq 9.2$ which allows a further simplification of eq 14 to eq 15 . Substituting

$$
\begin{array}{r}
\tau_{\mathrm{no}}{ }^{-1}(\mathrm{pH} \geq 9.2)=\frac{k_{1} k_{3} \mathrm{OH}^{2}\left[\mathrm{OH}^{-}\right]}{k_{-1}+k_{3} \mathrm{OH}^{\mathrm{OH}}\left[\mathrm{OH}^{-}\right]} \frac{K_{\mathrm{A}}}{K_{\mathrm{A}}+\left[\mathrm{H}^{+}\right]}+ \\
\frac{k_{-1} k_{-3} \mathrm{OH}}{k_{-1}+k_{3} \mathrm{OH}^{\mathrm{OH}}\left[\mathrm{OH}^{-}\right]} \tag{15}
\end{array}
$$

$K_{\mathrm{x}} k_{-3}{ }^{\mathrm{OH}} /\left[\mathrm{H}^{+}\right]$for $k_{3}{ }^{\mathrm{OH}}\left[\mathrm{OH}^{-}\right]$and solving for $k_{-3}{ }^{\mathrm{OH}}$ affords eq 16. Applying eq 16 to our data at pH 9.2 ,

[^2]Table II. Reciprocal Relaxation Times between pH 7.6 and 10.5 at Low Buffer Concentration ${ }^{a}$

$\mathrm{pH}^{\text {b }}$	$\begin{gathered} 10^{-3} \\ {\left[\mathrm{AH}_{2}^{+}\right]_{0}} \\ M \end{gathered}$	-—————- $\tau^{-1, c} \mathrm{sec}^{-1}$ ——————			
		[Buff] ${ }_{0}{ }^{\text {d }}$	[Buff] ${ }_{0}{ }^{\text {d }}$	[Buff] ${ }_{0}^{\text {d }}$	[Buff] ${ }_{0}^{\text {d }}$
		$=0.005$	$=0.01$	$=0.015$	$=0.02$
		M	M	M	M
7.62^{e}	1.0	11,450	14,700		17,200
$7.60{ }^{\prime}$	2.0	3,740	4,440		5,730
	4.0	4,520	5,380	5890	6,590
7.80^{\prime}	1.0	2,800	4,050	4700	
	3.0	4,080	4,650	5640	
8.007	1.0	2,500	3,230	3840	4,720
	4.0		4,480	5250	6,080
$8.20{ }^{\prime}$	1.0	1,860	2,380	2860	
	3.0	3,080	3,600	4150	
8.40°	0.1	620	740	990	1,040
	0.4	774	880	1010	1,140
$8.60{ }^{\circ}$	0.1	575	675	810	946
	0.4	720	834	952	1,050
8.80^{9}	0.1	580	655	790	907
	0.4		820	902	
9.00°	0.1	571	650	800	881
	0.4	640	685		
9.20	0.02	643	760	820	
	0.2	815	878	933	999
$9.40{ }^{\circ}$	0.1	746	780	840	911
	0.4	862	975	1010	1,025
$9.60{ }^{\circ}$	0.1	880	956	965	1,060
	0.4		957	975	
$9.80{ }^{\circ}$	0.4		963	995	983
10.00^{h}	0.3	1,080	1,175	1275	
10.30^{h}	0.4	1,100	1,230	1180	1,170
10.50^{h}	0.8	1,220		1260	1,230

${ }^{\text {a }}$ At $25 \pm 0.5^{\circ}, \mu=0.5 \mathrm{M}$ maintained by addition of NaCl . ${ }^{b} \mathrm{pH}$ as measured by glass electrode. ${ }^{c}$ Estimated uncertainty in $\tau^{-1}: \pm 10 \%$ at $\mathrm{pH} 7.60-7.80, \pm 8 \%$ at $\mathrm{pH} 8.00-8.40, \pm 5 \%$ at $\mathrm{pH} 8.60-9.80, \pm 8 \%$ at $\mathrm{pH} 9.80-10.30, \pm 10 \%$ at pH 10.50 . ${ }^{d}$ [Buff] $]_{0}=$ total buffer concentration. ${ }^{\varepsilon}$ Phosphate buffer. ${ }^{f}$ Tris buffer. ${ }^{g}$ Borate buffer. ${ }^{n}$ Carbonate buffer.
$k_{-3} \mathrm{OH}=$
$\frac{\tau_{\mathrm{no}}{ }^{-1} k_{-1}\left(K_{\mathrm{A}}+\left[\mathrm{H}^{+}\right]\right)\left[\mathrm{H}^{+}\right]}{k_{1} K_{\mathrm{A}} K_{\mathrm{X}}+k_{-1}\left(K_{\mathrm{A}}+\left[\mathrm{H}^{+}\right]\right)\left[\mathrm{H}^{+}\right]-\tau_{\mathrm{no}}{ }^{-1} K_{\mathrm{X}}\left(K_{\mathrm{A}}+\left[\mathrm{H}^{+}\right]\right)}$
9.4 , and 9.6^{16} yields $k_{-3}{ }^{\mathrm{OH}}=379,392$, and $572 \mathrm{sec}^{-1}$, respectively, average $445 \mathrm{sec}^{-1}$. Further we obtain $k_{3}{ }^{\mathrm{OH}}=k_{-3}{ }^{\mathrm{OH}} K_{\mathrm{X}} / K_{\mathrm{W}}=5.20 \times 10^{9} \mathrm{M}^{-1} \mathrm{sec}^{-1}$.

With this result we see that at $\mathrm{pH} \leq 8.2$ the first term in eq 14 becomes negligible and also $k_{3}{ }^{\circ}\left[\mathrm{OH}^{-}\right] \lll$ k_{-1}. Thus eq 14 reduces to

$$
\begin{equation*}
\tau_{\mathrm{no}}{ }^{-1}(\mathrm{pH} \leq 8.2)=k_{-3}\left[\mathrm{H}^{+}\right]+k_{-3} \mathrm{OH} \tag{17}
\end{equation*}
$$

A plot of $\tau_{\mathrm{no}}{ }^{-1} \mathrm{vs}$. $\left[\mathrm{H}^{+}\right]$at $\mathrm{pH} \leq 8.2$ (not shown) affords a straight line with a slope $k_{-3}=5.9 \times 10^{10} \mathrm{M}^{-1} \mathrm{sec}^{-1}$ and an intercept $k_{-3}{ }^{\mathrm{OH}}=347 \mathrm{sec}^{-1}$. Within experimental error this latter value agrees with the one obtained from eq 16 at $\mathrm{pH} 9.2-9.6$ ($445 \mathrm{sec}^{-1}$). Finally we calculate $k_{3}=K_{\mathrm{x}} k_{-3}=1.35 \times 10^{4} \mathrm{sec}^{-1}$.

Table III summarizes the parameters determined from kinetic and equilibrium measurements.

Buffer and Substrate Catalysis. From the data in Table II we can now also calculate $k^{{ }^{\mathrm{B}} \text { i }}$ and $k_{-3}{ }^{\mathrm{Bi}}$ for the various buffer and substrate components catalyzing the proton transfer between XH and X^{-}. At low concentrations the dependence of τ^{-1} on buffer and sub-

[^3]Table III. Rate and Equilibrium Constants for the Reactions of Equation 2

$k_{1}, \sec ^{-1}$	$1.20 \pm 0.08 \times 10^{3}$
$k_{-1}, \sec ^{-1}$	$1.93 \pm 0.40 \times 10^{5}$
$K_{1}=k_{1} / k_{-1}$	$6.21 \pm 1.50 \times 10^{-3}$
$K_{\mathrm{X}}, M^{\prime}$	$2.29 \pm 0.30 \times 10^{-7 a}$
$\mathrm{p} K \mathrm{x}$	6.64 ± 0.05^{a}
K_{A}, M	$2.23 \pm 0.22 \times 10^{-9} \mathrm{~b}, \mathrm{c}$
	$\left(2.82 \pm 0.43 \times 10^{-9}\right)^{\text {b }, d}$
$\mathrm{p} K_{\text {A }}$	$8.65 \pm 0.04^{6, c}$
	$(8.55 \pm 0.06)^{\text {b }}$, ${ }^{\text {d }}$
$k_{-3} \mathrm{OH}, \mathrm{sec}^{-1}$	$4.45 \pm 0.65 \times 10^{2}$ e
	$\left(3.47 \pm 0.70 \times 10^{2}\right)^{\prime}$
$k_{-3} \mathrm{H}_{2} \mathrm{O}=k_{-3} \mathrm{OH} / 55.6, M^{-1} \mathrm{sec}^{-1 i}$	8.0 ± 1.2
$k_{3}{ }^{\mathrm{OH}}, M^{-1} \mathrm{sec}^{-1}$	$5.20 \pm 1.04 \times 10^{9} \mathrm{~g}$
	$\left(4.05 \pm 0.81 \times 10^{9}\right)^{h}$
$k_{-3}, M^{-1} \sec ^{-1}$	$5.90 \pm 2.40 \times 10^{10}$
$k_{3}, \sec ^{-1}$	$1.35 \pm 0.65 \times 10^{4} i$
$k_{3} \mathrm{H}_{2} \mathrm{O}=k_{3} / 55.6, M^{-1} \mathrm{sec}^{-1} j$	$2.43 \pm 1.1 \times 10^{2}$
${ }^{\text {a }}$ Defined as $K \mathrm{x}=\left[\mathrm{H}^{+}\right]\left[\mathrm{X}^{-}\right] /$	the statistically corrected
values are $K \mathrm{x}=4.58 \times 10^{-7}$ or	$=6.34$; if K_{X} is defined as
$a_{\mathrm{H}}{ }^{+}\left[\mathrm{X}^{-}\right] /[\mathrm{XH}]$ the statistically un	ected (and corrected) values
are: $K_{\mathrm{x}}=1.70 \times 10^{-7}(3.40 \times$), $\mathrm{p} K \mathrm{x}=6.77$ (6.47). ${ }^{\text {b }} \mathrm{De}$ -
fined as $K_{\mathrm{A}}=\left[\mathrm{H}^{+}\right][\mathrm{AH}] /\left[\mathrm{AH}_{2}{ }^{+}\right]$.	defined as $K_{\mathrm{A}}=a_{\mathrm{H}}{ }^{+}[\mathrm{AH}] /$
$\left[\mathrm{AH}_{2}{ }^{+}\right]: K_{\mathrm{A}}=1.65 \times 10^{-9}, \mathrm{p} K_{\mathrm{A}}$	8.78; values obtained from
eq 8. ${ }^{d}$ From intercept in Figure 3	uming $\epsilon \mathrm{XH}^{510} 13,400$. ${ }^{\text {e }}$ From
eq 16 ; statistically corrected value	$22 \times 10^{2} . \quad /$ From intercept
of a plot according to eq 17; sta	cally corrected value is 1.73
$\times 10^{2}$. ${ }^{\circ}$ From $K_{\mathrm{X}} k_{-3} \mathrm{OH} / K_{\mathrm{W}}$ with	$k_{-3} \mathrm{OH}$ from eq 16, ${ }^{\text {n }}$ From
$K_{\mathrm{x}} k_{-3}{ }^{\mathrm{OH}} / \mathrm{KW}_{\text {w }}$ with $k_{-3} \mathrm{OH}^{\text {from eq }}$	${ }^{i}$ From $k_{-3} K_{\mathrm{X}}$ with K_{X} de-
fined as $\left[\mathrm{H}^{+}\right]\left[\mathrm{X}^{-}\right] /[\mathrm{XH}]$; statisticall	orrected value is 2.70×10^{4}.
${ }^{i}$ Converts to same units as the $k_{3}{ }^{\mathrm{B}}$ molarity of $\mathrm{H}_{2} \mathrm{O}$ in water; used in E	$k_{-3}{ }^{B_{i}}$'s by dividing through plot of Figure 5; see text.

strate concentration is linear which means that eq 6 can be approximated by eq $18 .{ }^{17}$

$$
\begin{gather*}
\tau^{-1}=\frac{\left.k_{1}\left(k_{3}+k_{3}{ }^{\mathrm{OH}^{\mathrm{H}}\left[\mathrm{OH}^{-}\right]+\Sigma k_{3}{ }^{\mathrm{B}} \mathrm{i}[\mathrm{~B}} \mathrm{B}\right]\right)}{k_{-1}+k_{3}{ }^{\mathrm{OH}}\left[\mathrm{OH}^{-}\right]} \frac{K_{\mathrm{A}}}{K_{\mathrm{A}}+\left[\mathrm{H}^{+}\right]} \\
\frac{k_{-1}\left(k_{-3}\left[\mathrm{H}^{+}\right]+k_{-3}{ }^{\text {oH }}+\Sigma k_{-3}^{\mathrm{B}_{\mathrm{i}}}\left[\mathrm{BH}_{3}\right]\right)}{k_{-1}+k_{3}{ }^{\mathrm{OH}}\left[\mathrm{OH}^{-}\right]} \tag{18}
\end{gather*}
$$

A plot of $\tau^{-1} v s$. the stoichiometric buffer concentration, $[B]_{0},{ }^{18}$ at any given pH and substrate concentration, or a plot of the intercepts of $\tau^{-1} v s$. buffer concentration plots $v s$. the stoichiometric substrate concentration has a slope given by eq 19. After substituting
slope $=$

$$
\begin{equation*}
\frac{k_{1} k_{3}^{\mathrm{B}} \frac{K_{\mathrm{A}} K_{\mathrm{B}}}{\left(K_{\mathrm{A}}+\left[\mathrm{H}^{+}\right]\right)\left(K_{\mathrm{B}}+\left[\mathrm{H}^{+}\right]\right)}+k_{-1} k_{-3}^{\mathrm{B}} \frac{\left[\mathrm{H}^{+}\right]}{K_{\mathrm{B}}+\left[\mathrm{H}^{+}\right]}}{k_{-1}+k_{3}^{\mathrm{OH}}[\mathrm{OH}]} \tag{19}
\end{equation*}
$$

$k_{3}{ }^{\mathrm{B}} K_{\mathrm{B}} / K_{\mathrm{X}}$ for $k_{-3}{ }^{\mathrm{B}}$ and solving for $k_{3}{ }^{\mathrm{B}}$ one obtains eq 20; K_{B} for the buffer was determined by potentiometric

$$
\begin{equation*}
k_{3}{ }^{\mathrm{B}}=\frac{\operatorname{slope}\left(k_{-1}+k_{3}{ }^{\left.{ }^{\mathrm{H}}\left[\mathrm{OH}^{-}\right]\right)\left(K_{\mathrm{B}}+\left[\mathrm{H}^{+}\right]\right)}\right.}{\left(k_{1} \frac{K_{\mathrm{A}}}{K_{\mathrm{A}}+\left[\mathrm{H}^{+}\right]}+k_{-1} \frac{\left[\mathrm{H}^{+}\right]}{K_{\mathrm{X}}}\right) K_{\mathrm{B}}} \tag{20}
\end{equation*}
$$

titration at an ionic strength of 0.5 M .
Calculation of $k_{3}{ }^{\mathrm{B}}$ according to eq 20 at three to four different pH values for Tris, borate, and the substrate showed some variation with pH . This could be expected since the experimental uncertainties are not insignificant and the various terms in eq 20 have their
(17) k_{3} in denominator is omitted since $k_{-1} \gg k_{3}$.
(18) $[\mathrm{B}]_{0}=[\mathrm{B}]+[\mathrm{BH}] ;[\mathrm{B}]=[\mathrm{B}]_{0} K_{\mathrm{B}} /\left(K_{\mathrm{B}}+\left[\mathrm{H}^{+}\right]\right),[\mathrm{BH}]=[\mathrm{B}]_{0}$.
$\left[\mathrm{H}^{+}\right] /\left(K_{\mathrm{B}}+\left[\mathrm{H}^{+}\right]\right)$with K_{B} being the acid dissociation constant of BH .

Table IV. Proton Transfer Rates between XH and B_{i}

B_{i}	$\mathrm{pK} \mathrm{Bi}^{a}$	$k_{3} \mathrm{~B}_{\mathrm{i}}, M^{-1} \sec ^{-1}$	$k_{-3} \mathrm{~B}_{\mathrm{i}},{ }^{b} M^{-1} \mathrm{sec}^{-1}$
Phosphate	6.28	$\sim 2 \times 10^{7}$	$\sim 4.6 \times 10^{7}$
Tris	8.06	$\sim 10^{7}$	$\sim 3.8 \times 10^{5}$
AH	8.65	$\sim 10^{8}$	$\sim 10^{6}$
Borate	8.71	$\sim 6 \times 10^{6}$	$\sim 5.1 \times 10^{4}$

${ }^{a}$ Determined by standard potentiometric titration at $\mu=0.5 \mathrm{M}$. ${ }^{b} k_{-3}{ }^{\mathrm{B}_{\mathrm{i}}}=k_{3}{ }^{\mathrm{B}_{\mathrm{i}} K_{\mathrm{B}}} / K \mathrm{x}$.
own uncertainties. Nevertheless, the constants which are summarized in Table IV and which represent averages from data at different pH values certainly give the right order of magnitude.

Discussion

Justification of Our Assumptions. In treating the kinetic data we assumed XH to be a steady-state intermediate, i.e., $k_{-1}+k_{3}+k_{3}{ }^{\mathrm{OH}}\left[\mathrm{OH}^{-}\right]+\Sigma k_{3}{ }^{\mathrm{B}}\left[\mathrm{B} \cdot \mathrm{B}_{\mathrm{i}}\right] \gg$ $k_{1}, k_{-3}\left[\mathrm{H}^{+}\right]+k_{-3}{ }^{\mathrm{OH}}+\Sigma k_{-3}{ }^{\mathrm{B}}\left[\mathrm{BH}_{\mathrm{i}}\right]$. The treatment of data at high buffer concentration or at high pH is, however, not dependent on this assumption. The fact that buffer dependence levels off at high concentrations means that τ^{-1} no longer depends on the rate of any proton transfer step and implies that under these conditions the equilibria $\mathrm{AH}_{2}+\rightleftharpoons \mathrm{AH}$ and $\mathrm{XH} \rightleftharpoons \mathrm{X}^{-}$are rapidly established compared to the equilibrium $\mathrm{AH} \rightleftharpoons \mathrm{XH}$. The slow relaxation time, derived according to standard procedures, ${ }^{6}$ in such a situation is given by

$$
\begin{equation*}
\tau_{\mathrm{hi}^{-1}}=k_{1} \frac{K_{\mathrm{A}}}{K_{\mathrm{A}}+\left[\mathrm{H}^{+}\right]}+k_{-1} \frac{\left[\mathrm{H}^{+}\right]}{K_{\mathrm{X}}+\left[\mathrm{H}^{+}\right]} \tag{21}
\end{equation*}
$$

As long as $\left[\mathrm{H}^{+}\right] \ll K_{\mathrm{x}}$ eq 21 and eq 7 are identical which is the case at $\mathrm{pH} \geq 7.8$. Since all our data on $\tau_{\mathrm{hi}}{ }^{-1}$ were in fact obtained at $\mathrm{pH} \geq 7.8$, the parameters $k_{-1} / K_{\mathrm{X}}, k_{1}$, and K_{A} calculated by applying eq 7 must be valid. This analysis demonstrates that $k_{-1} \gg k_{1}$ and thus one of the steady-state conditions is indeed fulfilled.

The second steady-state assumption, viz., $k_{-1}+k_{3}+$ $k_{3}{ }^{\mathrm{OH}}\left[\mathrm{OH}^{-}\right]+\Sigma k_{3} \mathrm{~B}_{\mathrm{i}}\left[\mathrm{B}_{\mathrm{i}}\right] \gg k_{-3}\left[\mathrm{H}^{+}\right]+k_{-3} \mathrm{OH}^{+}+\Sigma k_{-3} \mathrm{~B}_{\mathrm{i}}$. [BH_{i}], is amply met since at $\mathrm{pH} \geq 7.6$ the equilibrium favors X^{-}over XH by \geqtenfold, i.e., $k_{3}+k_{3}{ }^{\mathrm{OH}}\left[\mathrm{OH}^{-}\right]$ $+\Sigma k_{3}{ }^{\mathrm{B}_{i}}\left[\mathrm{~B}_{\mathrm{i}}\right] \geq 10\left(k_{-3}\left[\mathrm{H}^{+}\right]+k_{-3}{ }^{\mathrm{OH}}+\Sigma k_{-3}{ }^{\mathrm{B}_{\mathrm{i}}}\left[\mathrm{BH}_{\mathrm{i}}\right]\right)$.

Finally our assumption that equilibrium $\mathrm{AH}_{2}+\rightleftharpoons \mathrm{AH}$ is rapidly established compared to the equilibrium AH $\rightleftharpoons \mathrm{X}^{-}$, governed by k_{f} and k_{b}, not only at high but at low buffer concentrations as well, is validated as follows. One can estimate the reciprocal relaxation time for the equilibration of a normal ${ }^{19}$ acid-base pair with a $\mathrm{p} K_{\mathrm{a}}=$ $8.65\left(\mathrm{p} K_{\mathrm{A}}\right)$ to be $\geq 10^{5} \mathrm{sec}^{-1}$ at $\mathrm{pH} \geq 7.6 ;{ }^{19}$ this is indeed much higher than $k_{\mathrm{f}}+k_{\mathrm{b}}$ at any pH studied.

Rates of Proton Transfer. It should be pointed out at the outset that the value for k_{-3} has an estimated uncertainty of $\pm 40 \%$. With this reservation we note that $5.90 \times 10^{10} \mathrm{M}^{-1} \mathrm{sec}^{-1}$ is twice as large as the diffusion controlled rate constant of the reaction of $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}$ with $\mathrm{H}_{3} \mathrm{O}^{+}\left(3 \times 10^{10} \mathrm{M}^{-1} \mathrm{sec}^{-1}\right) .{ }^{20} \quad$ The high value is probably due to the fact that k_{-3} refers to the recombination of oppositely charged ions ${ }^{12.19}$ although the high ionic strength $(0.5 \mathrm{M})$ is expected to somewhat counteract such a charge effect.
(19) M. Eigen, Angew. Chem., Int. Ed. Engl., 3, 1 (1964).
(20) E. Grunwald and E. K. Ralph, J. Amer. Chem. Soc., 89, 2963, 4405 (1967).

Figure 5. Eigen plot for proton transfer rates: (O) $k_{3}{ }^{B i}$ (including $k_{3} \mathrm{H}_{2} \mathrm{O}$ and $k_{3}{ }^{\mathrm{OH}}$); (ம) $k_{-3} \mathrm{~B}_{i}$ (including k_{-3} and $k_{-3} \mathrm{H}_{2} \mathrm{O}$); (1) $\mathrm{H}_{2} \mathrm{O}$; (2) phosphate; (3) Tris; (4) AH; (5) borate; (6) OH^{-}.

The value for $k_{3}{ }^{\mathrm{OH}}=5.2 \times 10^{9} \mathrm{M}^{-1} \mathrm{sec}^{-1}$ is close to the value of $7.3 \times 10^{9} \mathrm{M}^{-1} \mathrm{sec}^{-1}$ for the diffusion controlled reaction of $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~N}^{+} \mathrm{HCH}_{2} \mathrm{COO}^{-}$with $\mathrm{OH}^{-}(\mu=$ $0.25 M)^{12}$ which is of the same charge type as the reaction of XH with OH^{-}. On the other hand, $k_{3}{ }^{\mathrm{OH}}$ is about 25 -fold higher than the rate constant reported for the reaction of OH^{-}with the zwitterionic Meisenheimer complexes formed from TNB with several secondary aliphatic amines. ${ }^{13}$ Possible reasons for this difference in rates are under current investigation.

Though the experimental uncertainty in the $k_{3}{ }^{B_{i}}$ and $k_{-3} \mathrm{~B}_{i}$ values is high, it is nevertheless instructive to use them, along with $k_{3}{ }^{\mathrm{OH}}, k_{3}{ }^{\mathrm{H}_{2} \mathrm{O}}=k_{3} / 55.6$ and k_{-3}, $k_{-3}{ }^{H} \mathrm{O}=k_{-3} \mathrm{OH} / 55.6$ in drawing an Eigen plot ${ }^{19}$ as shown in Figure 5. The plot shows the typical curvature and leveling off at $\Delta \mathrm{p} K \gg 0(\Delta \mathrm{p} K \ll 0$ respectively) as expected for a simple proton transfer between normal ${ }^{19}$ acids and bases and thus further confirms our mechanistic interpretation.

It is, however, noteworthy that the values for Tris and borate lie substantially below the line defined by the other points. In the case of Tris this is probably due to a steric factor whereas the low rate for borate may be related to the fact that proton transfer involves cleavage of a B-O bond; ${ }^{21}$ Sayer and Jencks ${ }^{23}$ have recently reported similar findings.

Even $k_{3}{ }^{\mathrm{B}}$ for phosphate and the substrate are somewhat lower than expected on the basis on Eigen's ${ }^{19}$ data. A possible interpretation could be a weak intramolecular hydrogen bond to one of the o-nitro groups in XH which could lower the proton transfer rate mainly when $\Delta \mathrm{p} K \lesssim 0$, but less when $\Delta \mathrm{p} K$ is large $\left(k_{3}{ }^{\mathrm{OH}}\right)$.

Implications. In our opinion the two most significant findings of this study are the following: (1) the unexpectedly high value of $k_{-1}=1.93 \times 10^{5} \mathrm{sec}^{-1}$ with the consequence that under certain conditions deprotonation of XH becomes rate limiting in the formation of X^{-}; (2) the high acidity of XH with a statistically corrected $\mathrm{p} K_{\mathrm{a}} 2.3$ units lower than the $\mathrm{p} K_{\mathrm{a}}$ of the amine nucleophile.

[^4]The high value of k_{-1} is striking because we are dealing with the strongly activated picryl system. It is well known that leaving group departure from Meisenheimer complexes of less activated systems is considerably faster; ${ }^{24}$ for example, methoxide ion explusion from the complex between methoxide ion and 2,4 -dinitroanisole is about 4×10^{4}-fold faster than from the analogous complex of 2,4,6-trinitroanisole. ${ }^{25}$ We can therefore expect that in typical reactions of secondary amine nucleophiles with the most frequently investigated type of substrate, 1-X-2,4-dinitrobenzene, ${ }^{26}$ the reversion of the initially formed zwitterionic intermediate (k_{-1} step) may have rate constants in the order of $10^{7}-10^{8} \mathrm{sec}^{-1}$ or even higher; for less activated substrates such as 1-X-4-nitrobenzene k_{-1} could probably reach a limit of $10^{10} \mathrm{sec}^{-1}$ in some cases. ${ }^{27}$

Let us now consider some implications of our results which may force reassessment of widely accepted notions about base catalyzed nucleophilic aromatic substitutions. In recent years general base catalysis has often been interpreted by a mechanism involving a rapid equilibrium between the initially formed zwitterionic intermediate (2) and its conjugate base (3), followed by a rate-limiting general acid catalyzed leaving group departure (eq 22). ${ }^{30}$ This has been called the SB-GA (for specific base-general acid) mechanism. ${ }^{26 \Omega}$

A common way to express the second-order rate coefficient k_{A}, defined as ($\left.\mathrm{d}[4] / \mathrm{d} t\right) /\left(\left[\mathrm{RR}^{\prime} \mathrm{NH}\right][1]\right)$, is by eq 23^{31} where $K_{3}{ }^{\mathrm{OH}}=K_{3} / K_{\mathrm{W}}, K_{3}{ }^{\mathrm{B}} \mathrm{i}=K_{3} / K_{\mathrm{B}_{i}}$ with K_{3}
(24) For a recent review, see M. J. Strauss, Chem. Rev., 70, 667 (1970).
(25) C. F. Bernasconi, J. Amer. Chem. Soc., 90, 4982 (1968).
(26) For recent reviews, see (a) C. F. Bernasconi, MTP (Med. Tech. Publ. Co.) Int. Rev. Sci.: Org. Chem. Ser. One, 3, 33 (1973); (b) F. Pietra, Quart. Rev., Chem. Soc., 23, 504 (1969); (c) J. Miller, "Aromatic Nucleophilic Substitution," Elsevier, New York, N. Y., 1968; (d) S. D. Ross, Progr. Phys. Org. Chem., 1, 31 (1963); (e) J. F. Bunnett, Quart. Rev., Chem. Soc., 12, 1 (1958).
(27) One might argue that the high k_{-1} value of this study to some extent reflects an extra driving force arising from developing resonance stabilization (of the type which renders aniline derivatives weak bases) in the transition state leading from XH to AH . Inasmuch as typical substrates of nucleophilic aromatic substitution reactions are not aniline derivatives such resonance stabilization would be of less importance. However, preliminary results on the same reaction of the Meisenheimer complex of N-methyl- β-aminoethyl picryl ether indicate that the effect is not significant. ${ }^{28}$ Another possible extra driving force is the release of strain due to eclipsing interactions in the five-membered ring of XH. ${ }^{29}$ On the other hand, k_{-1} in the present study relates to an intramolecular complex which probably has the effect of somewhat reducing k_{-1} compared to an intermolecular situation and thus may counteract the effect of eclipsing.
(28) C. F. Bernasconi and C. L. Gehriger, unpublished results.
(29) J. F. Bunnett, personal communication.
(30) See, e.g. (a) footnote 27 in J. F. Bunnett and G. T. Davis, J. Amer. Chem. Soc., 82, 665 (1960): (b) J. F. Bunnett and R. H. Garst, ibid., 87, 3879 (1965); (c) J. F. Bunnett and C. F. Bernasconi, ibid., 87, 5209 (1965); (d) A. J. Kirby and W. P. Jencks, ibid., 87, 3217 (1965).
(31) (a) J. A. Orvik and J. F. Bunnett, J. Amer. Chem. Soc., 92, 2417 (1970); (b) J. F. Bunnett and C. F. Bernasconi, J. Org. Chem., 35, 70 (1970).

$$
\begin{equation*}
k_{\mathrm{A}}=\frac{k_{1}\left(K_{3} \mathrm{OH}_{k_{3}} \mathrm{OH}\left[\mathrm{OH}^{-}\right]+\Sigma K_{3}^{\left.\mathrm{B}^{\mathrm{B}} \bar{k}_{3} \mathrm{~B}_{i}\left[\mathrm{~B}_{\mathrm{i}}\right]\right)}\right.}{k_{-1}+K_{3}^{\mathrm{OH}} \bar{k}_{3}^{\mathrm{OH}}\left[\mathrm{OH}^{-}\right]+\Sigma K_{3} \mathrm{~B}_{\mathrm{i}} \bar{k}_{3}^{\mathrm{B}}\left[\mathrm{~B}_{\mathrm{i}}\right]} \tag{23}
\end{equation*}
$$

and $K_{B_{i}}$ being the acid dissociation constants of 2 and BH_{i}, respectively, ${ }^{32}$

The results of this study suggest that the assumption of a rapid equilibrium between $\mathbf{2}$ and $\mathbf{3}$ may not always be justified. Thus the scheme of eq 24 which takes into

account the kinetic importance of the proton transfer steps is more appropriate.

Treating both 2 and 3 as steady-state intermediates but without assuming that 2 and 3 are necessarily in rapid equilibrium, the following expression for k_{A} is obtained

$$
\begin{equation*}
k_{\mathrm{A}}=\frac{k_{\mathrm{f}}\left(\bar{k}_{3} \mathrm{OH}+\Sigma \bar{k}_{k_{3}}{ }^{\mathrm{B}}\left[\mathrm{BH}_{\mathrm{i}}\right]\right)}{k_{\mathrm{b}}+\widetilde{k}_{3}^{\mathrm{OH}}+\Sigma \overleftarrow{k}_{3} \stackrel{\mathrm{~B}}{\mathrm{i}}\left[\mathrm{BH} \mathrm{BH}_{\mathrm{i}}\right]} \tag{25}
\end{equation*}
$$

where k_{f} and k_{b} are defined as in eq 4 and 5 .
Two limiting situations with regard to eq 25 are of particular interest. (1) $k_{\mathrm{b}} \gg \bar{k}_{3} \mathrm{OH}+\Sigma \vec{k}_{3} \mathrm{~B}_{\mathrm{i}}\left[\mathrm{BH}_{\mathrm{i}}\right]$ which simplifies eq 25 to eq 26 . This is identical with

$$
\begin{align*}
& k_{\mathrm{A}}=\frac{k_{\mathrm{f}}}{k_{\mathrm{b}}}\left(\bar{k}_{3}{ }^{\mathrm{OH}}+\Sigma \bar{k}_{3}{ }^{\mathrm{B}}\left[\mathrm{BH}_{\mathrm{i}}\right]\right)= \\
& \left.\frac{k_{1}}{k_{-1}} K_{3}{ }^{\mathrm{OH}} \bar{k}_{3}{ }^{\mathrm{OH}}\left[\mathrm{OH}^{-}\right]+\Sigma K_{3}{ }^{\mathrm{B}_{\mathrm{i}}}{\overline{k_{3}}}^{\mathrm{B}_{\mathrm{i}}}\left[\mathrm{~B}_{\mathrm{i}}\right]\right) \tag{26}
\end{align*}
$$

the form taken by eq 23 under the condition $k_{-1} \gg$ $K_{3} \mathrm{OH} \vec{k}_{3} \mathrm{OH}\left[\mathrm{OH}^{-}\right]+\Sigma K_{3} \mathrm{~B}_{\mathrm{i}} \bar{k}_{3} \mathrm{~B}_{\mathrm{i}}\left[\mathrm{B}_{\mathrm{i}}\right]$. This means that when leaving group departure is overall rate limiting, it is immaterial whether proton transfer between 2 and 3 is very rapid (eq 23) or whether it is rate limiting with respect to the formation of 3 (eq 22). In other words, the "old views" prevail.
(2) The situation is different when $k_{\mathrm{b}} \ll \bar{k}_{3} \mathrm{OH}+$
(32) Note that in order to account for the noncatalyzed product forming step

$$
\mathbf{2} \xrightarrow{k 2} \mathbf{4}
$$

expressions for k_{A} customarily include an additional term both in the numerator ($k_{1} k_{2}$) and in the denominator (k_{2}) of eq 23. Since usually $k_{-1} \gg k_{2}{ }^{26 a}$ this is of no consequence to the denominator. Equation 23 thus accounts for that part of k_{A} which arises from the base-catalyzed pathways only; under most experimental conditions this is in fact the major part of k_{A} in many reactions. ${ }^{26 \mathrm{a}}$ We use eq 23 rather than the full equation in order to simplify the discussion to follow. Note also that the "logical pathway"

$$
3 \xrightarrow{\bar{k}_{3}\left\{\mathrm{H}^{+}\right]} 4
$$

is not included in eq 22 because the sequence

cannot be distinguished from the direct pathway ${ }^{26 a, 33}$

$$
\mathbf{2} \xrightarrow{k_{2}} 4
$$

At any rate this sequence has recently been shown to be of very minor importance compared to the k_{2} step. ${ }^{26 a .33}$
(33) C. F. Bernasconi and R. H. de Rossi, J. Org. Chem., 38, 500 (1973).
$\Sigma \bar{k}_{3}{ }^{\mathrm{B}}\left[\mathrm{BH}_{\mathrm{i}}\right]$; eq 25 becomes eq 27 and general base

$$
\begin{equation*}
k_{\mathrm{A}}=k_{\mathrm{f}}=\frac{k_{1}\left(k_{3}+k_{3}{ }^{\mathrm{OH}}\left[\mathrm{OH}^{-}\right]+\Sigma k_{3}{ }^{\mathrm{B}}\left[\mathrm{~B}_{\mathrm{i}}\right]\right)}{k_{-1}+k_{3}+k_{3}{ }^{\mathrm{OH}}\left[\mathrm{OH}^{-}\right]+\Sigma k_{3}{ }^{\mathrm{B}}\left[\mathrm{~B}_{\mathrm{i}}\right]} \tag{27}
\end{equation*}
$$

catalysis means rate-limiting proton transfer.
Is such a situation likely to occur? To answer this question we must estimate the rates of the processes involved. For simplicity we assume that the concentrations of all B_{i} 's and BH_{i} 's are kept so low that their respective rate terms become negligible, a condition often desired and achieved experimentally ($c f$. with $\tau_{\mathrm{n},}{ }^{-1}$).
(1) $\bar{k}_{3} \mathrm{OH}$. A recent study of reaction 28 afforded

5

$\bar{k}_{3} \mathrm{OH} \approx 10^{3} \mathrm{sec}^{-1}$ in aqueous solution. ${ }^{33}$ Since the leaving group in reaction 28 is a rather poor one ($\mathrm{p} K_{\mathrm{a}}$ of the conjugate acid of $6>14^{33}$) and due to the intramolecularity, $10^{3} \mathrm{sec}^{-1}$ should be regarded as a lower limit for oxygen leaving groups in the 1-X-2,4-dinitrobenzene series; in less activated systems $\bar{k}_{3} \mathrm{OH}$ will be correspondingly higher.
(2) k_{b}. The upper limit for k_{b} is given by $k_{-3}\left[\mathrm{H}^{+}\right]$ $+k_{-3}{ }^{\mathrm{OH}}$. If we assume $k_{-3} \approx 6 \times 10^{10} \mathrm{M}^{-1} \mathrm{sec}^{-1}$ and $k_{3}{ }^{0 \mathrm{OH}} \approx 5 \times 10^{9} \mathrm{M}^{-1} \mathrm{sec}^{-1}$ as determined in this study, this upper limit can be expressed as $6 \times 10^{10}\left[\mathrm{H}^{+}\right]+$ $5 \times 10^{-5} / K_{3} .^{34}$

We need now an estimate for $K_{3} .{ }^{34}$ In our model system the (statistically corrected) $\mathrm{p} K$ of the zwitterion (XH) is 2.3 units lower than that of the amine nucleophile $\left(\mathrm{AH}_{2}{ }^{+}\right)$. In a less activated system (fewer acidifying nitro groups) we expect this pK difference to be somewhat smaller, perhaps ~ 1.6 units with $1-\mathrm{X}-2,4-$ dinitrobenzene substrates. Thus for the reactions in 10% dioxane- 90% water of 2,4 -dinitrophenyl phenyl ether with piperidine ${ }^{30 \mathrm{c}}(\mathrm{pK} \approx 11$), N-methylbenzylamine ${ }^{35 \mathrm{~b}}(\mathrm{p} K \approx 9.6)$, and morpholine ${ }^{35 \mathrm{~b}}(\mathrm{p} K \approx 8.4)$ we estimate $K_{3} \approx 4 \times 10^{-10}, 10^{-8}$, and 1.6×10^{-7}, respectively, and $k_{\mathrm{b}} \leq 1.25 \times 10^{5}, 5 \times 10^{3}$, and 3.12 $\times 10^{2} \mathrm{sec}^{-1}$, respectively.

It thus appears that at least in the morpholine reaction the relation $k_{\mathrm{b}} \ll \bar{k}_{3} \mathrm{OH}$ ($\bar{k}_{3} \mathrm{OH}$ assumed to be $>10^{3}$ sec^{-1}) and with it eq 27 might indeed hold but probably not in the reactions of the more basic amines. ${ }^{36}$
(34) $k_{-3} \mathrm{OH}=k_{3} \mathrm{OH} / K_{3} \mathrm{OH}=k_{3}{ }^{\mathrm{OH}} K_{W} / K_{3}=5 \times 10^{-5} / K_{3}, K_{3}=$ acid dissociation constant of 2 .
(35) (a) C. F. Bernasconi, J. Org. Chem., 32, 2947 (1967); (b) C. F. Bernasconi and P. Schmid, ibid., 32, 2953 (1967).

Among the reactions of 1-X-2,4-dinitrobenzenes the one of the weakly basic N-methylaniline ($\mathrm{p} K \approx 4.9$) with l-fiuoro-2,4-dinitrobenzene ${ }^{38}$ appears the most likely to undergo rate-limiting proton transfer, just as Bunnett originally suggested ${ }^{38}$ but later rejected ${ }^{30 \mathrm{~b}}$ on grounds that deprotonation of 2 should be very rapid.

In still less activated systems, e.g., the reactions of 4nitrophenyl phosphate with piperidine or dimethylamine, ${ }^{30 \mathrm{~d}}$ base catalysis must almost certainly be due to rate-limiting proton transfer.

Experimental Section

Materials. N, N^{\prime}-Dimethyl- N-picrylethylenediamine hydrochloride was prepared by adding 3.3 g (37 mmol) of N, N^{\prime}-dimethylethylenediamine (Aldrich) dropwise to a solution of 6.2 g (25 mmol) of picryl chloride in 100 ml of ethanol. A yellow precipitate was formed, presumably the dimer N, N^{\prime}-dimethyl $-N, N^{\prime}$-dipicrylethylenediamine, ${ }^{39}$ which was filtered off. The filtrate was acidified with HCl and concentrated to 50 ml in order to precipitate the product which was twice recrystallized from acidic ethanol, mp 208°, yield 25%. Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{~N}_{5} \mathrm{O}_{6} \mathrm{Cl}$: C, 35.75; $\mathrm{H}, 4.17$; $\mathbf{N}, 20.85$. Found: $\mathrm{C}, 35.85 ; \mathbf{H}, 4.12 ; \mathbf{N}, 20.49$. The Meisenheimer complex (X^{-}) was prepared in situ by adding one drop of $5 N \mathrm{NaOH}$ to a solution of $\mathrm{AH}_{2}{ }^{+}$in DMSO- d_{6} : pmr (DMSO- d_{6}) $\delta 2.65\left(\mathrm{~s}, 6, \mathrm{CH}_{3} \mathrm{~N}\right.$), $3.35\left(\mathrm{~s}, 4, \mathrm{CH}_{2} \mathrm{~N}\right.$), 9.04 (s, 2, ring); uv $\max \left(\mathrm{H}_{2} \mathrm{O}\right) 442 \mathrm{~nm}(\epsilon 24,200)$.

Tris ${ }^{40}$ (Mallinckrodt), sodium borate (Matheson Reagent Grade), and sodium bicarbonate (Mallinckrodt Analytical Reagent) were used without further purification. HCl and NaOH solutions were prepared from Titrisol.

Rate and Equilibrium Measurements. Kinetic determinations were made on a temperature-jump transient spectrophotometer of Messanlagen Studiengesellschaft, Göttingen, Germany. The solutions, equilibrated at 22°, were subjected to temperature jumps of 3° (end temperature 25°). Relaxation was monitored at 546 or 365 nm ; at $\mathrm{pH} \leq 8.80$ the relaxtion amplitude ${ }^{6}$ was optimal at 546 nm because the equilibrium favors $\mathrm{AH}_{2}{ }^{+}+\mathrm{AH}$ over $\mathrm{XH}+\mathrm{X}^{-}$ whereas at $\mathrm{pH} \geq 9.00$ the relaxation amplitudes become larger at 365 nm since XH and X^{-}are now the favored species. Each relaxation time reported represents the average of at least three relaxation curves.

The pH was measured at $25 \pm 0.1^{\circ}$ on a Corning Mode! 12 pH meter. For the determination of $K x$ the $O D$ at 510 nm was measured on a Cary 14 spectrophotometer equipped with an expanded slidewire ($0-0.2 \mathrm{OD}$). The residual absorption of $\mathrm{AH}_{2}{ }^{+}$due to the very high substrate concentration ($3 \times 10^{-3} M$) was compensated by having an acidic solution ($\mathrm{pH}<5$) of $\mathrm{AH}_{2}{ }^{+}$at the same concentration in the reference cuvette (difference spectrum).

Acknowledgments. This work was supported by Grant No. GP-25501 of the National Science Foundation. We thank Professor J. F. Bunnett, Professor W. P. Jencks, and Dr. F. Terrier for criticism of the manuscript.

[^5]
[^0]: (1) (a) Part X: C. F. Bernasconi, R. H. deRossi, and C. L. Gehriger, J. Org. Chem., 38, 2838 (1973). (b) Presented at 12th Pacific Conference on Chemistry and Spectroscopy, San Diego, Calif., Nov 1973.
 (2) Alfred P. Sloan Fellow, 1971-1973.

[^1]: (4) See, e.g. (a) V. Gold and C. H. Rochester, J. Chem. Soc., 1697, 1727 (1964); (b) M. R. Crampton and V. Gold, Proc. Chem. Soc., London, 298 (1964).

[^2]: (12) M. Eigen, W. Kruse, G. Maass, and L. De Maeyer, Progr. React. Kinet., 2, 287 (1964).
 (13) C. F. Bernasconi, J. Phys. Chem., 75, 3636 (1971).
 (14) $\mathrm{Kw}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=1.96 \times 10^{-14}$ in $0.5 \mathrm{M} \mathrm{NaCl}{ }^{15}$ at 25°.
 (15) H. S. Harned and B. B. Owen, "The Physical Chemistry of Electrolytic Solutions," Reinhold, New York, N. Y., 1950, p 486.

[^3]: (16) At $\mathrm{pH}>9.6 \tau_{50}{ }^{-1}$ becomes insensitive to $k_{3} \mathrm{OH}$ and $k_{-3} \mathrm{OH}$ with the consequence that the denominator in eq 16 becomes a small difference between two large numbers.

[^4]: (21) (a) J. O. Edwards, G. C. Morrison, V. F. Ross, and J. W. Schultz, J. Amer. Chem. Soc., 77, 266 (1955); (b) R. P. Bell, R. B. Jones, and J. O. Edwards, as quoted in Bell and Evans. ${ }^{22}$
 (22) R. P. Bell and P. G. Evans, Proc. Roy. Soc., Ser. A, 291, 297 (1966).
 (23) J. M. Sayer and W. P. Jencks, J. Amer. Chem. Soc., 95, 5636 (1973).

[^5]: (36) The reaction of 2,4-dinitrophenyl phenyl ether with piperidine in 60% dioxane -40% water shows an isotope effect when the ether oxygen is replaced by ${ }^{18} \mathrm{O}$, thus indicating rate-limiting leaving group departure ($k_{\mathrm{b}}>\bar{k}_{3} \mathrm{OH}$). ${ }^{37}$
 (37) C. R. Hart and A. N. Bourns, Tetrahedron Lett., 2995 (1966)
 (38) J. F. Bunnett and J. J. Randall, J. Amer. Chem. Soc., 80, 6020 (1958).
 (39) S. Hinnig, private communication, 1970.
 (40) Tris(hydroxymethyl)aminoethane.

